Useful Info
Purpose of Alloying | |||||||||||||||||||||||||
The main purposes of adding alloying elements to steels can be listed as follows. | |||||||||||||||||||||||||
a) | To improve hardening ability, | ||||||||||||||||||||||||
b) | To increase hardness, strength and toughness, | ||||||||||||||||||||||||
c) | To improve mechanical properties at low and high temperatures, | ||||||||||||||||||||||||
d) | To increase the wear resistance, | ||||||||||||||||||||||||
e) | To increase corrosion resistance, | ||||||||||||||||||||||||
f) | To improve Magnetic Properties. | ||||||||||||||||||||||||
The effects of alloying elements on steel structure can be defined as follows. | |||||||||||||||||||||||||
Carbon (C): | Provides strength and hardening ability. It reduces formability and weldability. | ||||||||||||||||||||||||
Chromium (Cr): | It provides hardening depth, thermal strength, resistance to corrosion. Chromium is the basic alloying element of stainless steels. | ||||||||||||||||||||||||
Nickel (Ni): | It has positive effects on hardening depth, ductility and thermal expansion. Increases the impact toughness of nickel and strength in annealed steels. Nickel is the second most important alloying element of austenitic stainless steels after chromium. The nickel content in austenitic stainless steels is between 7-20%. | ||||||||||||||||||||||||
Manganese (Mn): | Increases strength, improves hardening depth, weldability and ductility. By binding with sulfur (S) (MnS), it prevents the brittleness (fragile FeS compound) caused by sulfur. | ||||||||||||||||||||||||
Silicon (Si): | Improves high temperature resistance and magnetic properties; improves tensile strength and elasticity. It is included in steel as a deoxidizer. | ||||||||||||||||||||||||
Molybdenum (Mo): | It provides thermal strength, temper brittleness, corrosion and abrasion resistance. | ||||||||||||||||||||||||
Vanadium (V): | It provides thermal strength, resistance to tempering. It has a grain refining and carbide forming effect; increases the strength. Improves hardening ability. | ||||||||||||||||||||||||
Tungsten (W): | It provides thermal hardness, resistance to tempering and abrasion resistance. It maintains hardness in rising temperature. Therefore, speed steels etc. are used. | ||||||||||||||||||||||||
Cobalt (Co): | It is an alloying element used in alloyed tool steels. It is used to maintain the hardness of tool steels in hot. Provides abrasion resistance. | ||||||||||||||||||||||||
Titanium (Ti): | It has a grain-reducing effect like vanadium. However, this effect is higher than that of vanadium. | ||||||||||||||||||||||||
Aluminium (Al): | It is used to remove oxygen. It increases the yield strength and impact toughness. In addition, aluminum has a grain-reducing effect, it is the basic alloying element of nitriding steels. It is also used as a micro alloying element forming nitride and carbonitride in some micro alloy steels. | ||||||||||||||||||||||||
Lead (Pb): | It decreases the rolling ability. It causes ruptures during rolling, negatively affects the surface quality. It increases the machining ability of steels, so it is used as an alloying element in free cutting steels. | ||||||||||||||||||||||||
Nitrogen (N): | It is an undesirable element. It causes nitrogen brittleness, making its bending properties very bad. | ||||||||||||||||||||||||
Copper (Cu): | It increases the yield and tensile strength, decreases the percent elongation and formability. Increases Corrosion resistance. | ||||||||||||||||||||||||
Tin (Sn): | It does not affect the yield and tensile strength much, but creates problems in hot rolling. | ||||||||||||||||||||||||
Sulfur (S): | It has little or no effect on yield and tensile strength. However, it has a great effect on the percentage elongation and toughness of the material. Sulfur significantly reduces the toughness and ductility of the material. Sulfur is an element in steel that remains from the production of steel and is removed from the structure as much as possible due to the above-mentioned undesirable properties. The sulfur content is kept high only in die cutting steels suitable for machining. | ||||||||||||||||||||||||
Phosphorus (P): | Phosphor increases the yield and tensile strength of steel, worsens the percent elongation and bending properties too much, creates cold brittleness, and increases chip forming capability. Phosphorus is an element in steel that remains from production processes and is removed from the structure as much as possible due to its undesirable properties. | ||||||||||||||||||||||||
Si | Mn* | Mn** | Cr | Ni* | Ni** | Al | W | V | Co | Mo | S | P | |||||||||||||
Hardness | ↑ | ↑ | ↓↓↓ | ↑↑ | ↑ | ↓↓ | – | ↑ | ↑ | ↑ | ↑ | – | ↑ | ||||||||||||
Strength | ↑ | ↑ | ↑ | ↑↑ | ↑ | ↑ | – | ↑ | ↑ | ↑ | ↑ | – | ↑ | ||||||||||||
Yield Point | ↑↑ | ↑ | ↓ | ↑↑ | ↑ | ↓ | – | ↑ | ↑ | ↑ | ↑ | – | ↑ | ||||||||||||
Elongation | ↓ | ↔ | ↑↑↑ | ↓ | ↔ | ↑↑↑ | – | ↓ | ↔ | ↓ | ↓ | ↓ | ↓ | ||||||||||||
Impact Resistance | ↓ | ↔ | – | ↓ | ↔ | ↑↑↑ | ↓ | – | ↑ | ↓ | ↑ | ↓ | ↓↓↓ | ||||||||||||
Elasticity | ↑↑↑ | ↑ | – | ↑ | – | – | ↓ | – | ↑ | – | – | – | – | ||||||||||||
Heat Resistance | ↑ | ↔ | – | ↑ | ↑ | ↑↑↑ | – | ↑↑↑ | ↑↑ | ↑↑ | ↑↑ | – | – | ||||||||||||
Cooling Speed | ↓ | ↓ | ↓↓ | ↓↓↓ | ↓↓ | ↓↓ | – | ↓↓ | ↓ | ↑↑ | ↓↓ | – | – | ||||||||||||
Wear Resistance | ↓↓↓ | ↓↓ | – | ↑ | ↓↓ | – | – | ↑↑↑ | ↑↑ | ↑↑↑ | ↑↑ | – | – | ||||||||||||
Forgability | ↓ | ↑ | ↓↓↓ | ↓ | ↓ | ↓↓↓ | ↓↓ | ↓↓ | ↑ | ↓ | ↓ | ↓↓↓ | ↓↓↓ | ||||||||||||
Machinability | ↓ | ↓ | ↓↓↓ | – | ↓ | ↓↓↓ | – | ↓↓ | – | ↔ | ↓ | ↑↑↑ | ↓↓↓ | ||||||||||||
Tendency to Oxidize | ↓ | ↔ | ↓↓ | ↓↓↓ | ↓ | ↓↓ | ↓↓ | ↓↓ | ↓ | ↓ | ↑↑ | – | ↓↓ | ||||||||||||
Corrossion Resistance | – | – | – | ↑↑↑ | – | ↑↑ | – | – | ↑ | – | – | ↓ | ↑↑ | ||||||||||||
↑ Increases // ↓ Decreases // ↔ Unchanges // – Has no effect or unknown effect // | |||||||||||||||||||||||||
* Austenitic Steel // ** Perlithic Steel |
BRINEL HARDNESS | VICKERS HARDNESS | ROCKWELL C HARDNESS | TENSILE STRENGTH | BRINEL HARDNESS | VICKERS HARDNESS | ROCKWELL C HARDNESS | TENSILE STRENGTH | BRINEL HARDNESS | VICKERS HARDNESS | ROCKWELL C HARDNESS | TENSILE STRENGTH | ||||||||||||||||
HB | HV | HRC | N/mm2 | HB | HV | HRC | N/mm2 | HB | HV | HRC | N/mm2 | ||||||||||||||||
76.0 | 80 | ── | 265 | 233 | 245 | 21.3 | 785 | (494) | 520 | 50.5 | 1700 | ||||||||||||||||
80.7 | 85 | ── | 270 | 238 | 250 | 22.2 | 800 | (504) | 530 | 51.1 | 1740 | ||||||||||||||||
85.5 | 90 | ── | 285 | 242 | 255 | 23.1 | 820 | (513) | 540 | 51.7 | 1775 | ||||||||||||||||
90.2 | 95 | ── | 305 | 247 | 260 | 24.0 | 835 | (523) | 550 | 52.3 | 1810 | ||||||||||||||||
95.0 | 100 | ── | 320 | 252 | 265 | 24.8 | 850 | (532) | 560 | 53.0 | 1845 | ||||||||||||||||
98.8 | 105 | ── | 335 | 257 | 270 | 25.6 | 865 | (542) | 570 | 53.6 | 1880 | ||||||||||||||||
105 | 110 | ── | 350 | 261 | 275 | 26.4 | 880 | (551) | 580 | 54.1 | 1920 | ||||||||||||||||
109 | 115 | ── | 370 | 266 | 280 | 27.1 | 900 | (561) | 590 | 54.7 | 1955 | ||||||||||||||||
114 | 120 | ── | 385 | 271 | 285 | 27.8 | 915 | (570) | 600 | 55.2 | 1995 | ||||||||||||||||
119 | 125 | ── | 400 | 276 | 290 | 28.5 | 930 | (580) | 610 | 55.7 | 2030 | ||||||||||||||||
124 | 130 | ── | 415 | 280 | 295 | 29.2 | 950 | (589) | 620 | 56.3 | 2070 | ||||||||||||||||
128 | 135 | ── | 430 | 285 | 300 | 29.8 | 965 | (599) | 630 | 56.8 | 2105 | ||||||||||||||||
133 | 140 | ── | 450 | 295 | 310 | 31.0 | 995 | (608) | 640 | 57.3 | 2145 | ||||||||||||||||
138 | 145 | ── | 465 | 304 | 320 | 32.2 | 1030 | (618) | 650 | 57.8 | 2180 | ||||||||||||||||
143 | 150 | ── | 480 | 314 | 330 | 33.3 | 1060 | ── | 660 | 58.3 | ── | ||||||||||||||||
147 | 155 | ── | 495 | 323 | 340 | 34.4 | 1095 | ── | 670 | 58.8 | ── | ||||||||||||||||
152 | 160 | ── | 510 | 333 | 350 | 35.5 | 1125 | ── | 680 | 59.2 | ── | ||||||||||||||||
156 | 165 | ── | 530 | 342 | 360 | 36.6 | 1155 | ── | 690 | 59.7 | ── | ||||||||||||||||
162 | 170 | ── | 545 | 352 | 370 | 37.7 | 1190 | ── | 700 | 60.1 | ── | ||||||||||||||||
166 | 175 | ── | 560 | 361 | 380 | 38.8 | 1220 | ── | 720 | 61.0 | ── | ||||||||||||||||
171 | 180 | ── | 575 | 371 | 390 | 39.8 | 1255 | ── | 740 | 61.8 | ── | ||||||||||||||||
176 | 185 | ── | 595 | 380 | 400 | 40.8 | 1290 | ── | 760 | 62.5 | ── | ||||||||||||||||
181 | 190 | ── | 610 | 390 | 410 | 41.8 | 1320 | ── | 780 | 63.3 | ── | ||||||||||||||||
185 | 195 | ── | 625 | 399 | 420 | 42.7 | 1350 | ── | 800 | 64.0 | ── | ||||||||||||||||
190 | 200 | ── | 640 | 409 | 430 | 43.6 | 1385 | ── | 820 | 64.7 | ── | ||||||||||||||||
195 | 205 | ── | 660 | 418 | 440 | 44.5 | 1420 | ── | 840 | 65.3 | ── | ||||||||||||||||
199 | 210 | ── | 675 | 428 | 450 | 45.3 | 1455 | ── | 860 | 65.9 | ── | ||||||||||||||||
204 | 215 | ── | 690 | 437 | 460 | 46.1 | 1485 | ── | 880 | 66.4 | ── | ||||||||||||||||
209 | 220 | ── | 705 | 447 | 470 | 46.9 | 1520 | ── | 900 | 67.0 | ── | ||||||||||||||||
214 | 225 | ── | 720 | (456) | 480 | 47.7 | 1555 | ── | 920 | 67.5 | ── | ||||||||||||||||
219 | 230 | ── | 740 | (466) | 490 | 48.4 | 1595 | ── | 940 | 68.0 | ── | ||||||||||||||||
223 | 235 | ── | 755 | (475) | 500 | 49.1 | 1630 | ── | ── | ── | ── | ||||||||||||||||
228 | 240 | 20.3 | 770 | (485) | 510 | 49.8 | 1665 | ── | ── | ── | ── | ||||||||||||||||
The effect of the chemical composition of the welded part is very important in the concept of weldability. Especially Carbon (C) and Manganese (Mn) are the two most important elements that affect the hardening ability of unalloyed steel. In low alloy steels, in addition to Carbon and Manganese in the composition of the steel, alloying elements such as Chromium (Cr), Molybdenum (Mo), Vanadium (V), Nickel (Ni) and Copper (Cu) also contribute to hardness. Carbon Equivalent concept was created to determine the contribution of these elements to hardness. In this concept, the amount of carbon that gives the hardness equivalent to the hardness formed by the alloying elements in the composition of the steel is called Carbon Equivalent. The carbon equivalent formula (Ceq) adopted by the International Welding Institute's (IIW) Commission No. IX is as follows; | ||||||||||||||||||||||||
Ceq | = | C | + | Mn | + | Cr+Mo+V | + | Ni+Cu | ||||||||||||||||
6 | 5 | 15 | ||||||||||||||||||||||
The formula given above can also be seen as a guide for the pre-annealing process, which is used to prevent rapid cooling of steels during welding. There is a relationship between carbon equivalent pre-annealing temperature roughly as follows. | ||||||||||||||||||||||||
Carbon Equivalent (Ceq) (%) | Pre-Annealing Temperature (ºC) | |||||||||||||||||||||||
0,45 < Ceq | There is no need for pre-annealing under normal atmospheric conditions. | |||||||||||||||||||||||
0,45 ≤ Ceq ≤ 0,60 | 100 – 200 | |||||||||||||||||||||||
Ceq > 0,60 | 200 – 300 | |||||||||||||||||||||||
As a result; When welding a steel, the first issue that comes to mind should be the chemical composition of the steel. The norm of the steel to be welded should be learned and the content and carbon equivalent should be determined from the chemical analysis tables in the steel certificate. Welding process should be done after checking the part thickness and deciding whether to apply a preheat according to the selected electrode diameter. | ||||||||||||||||||||||||
Symbol | Definition | Symbol | Definition | ||||||||||||||||||||||
+A (TC) | Soft annealed | +QT (TF) | Quenched and tempered | ||||||||||||||||||||||
+AC | Spheroidized annealed | +QW | Quenched in water | ||||||||||||||||||||||
+AR | As rolled, natural state | +RA | Recrystallization annealing | ||||||||||||||||||||||
+AT | Solubilization annealed | +S | Annealed for cold shearing | ||||||||||||||||||||||
+BC | Hot formed and sandblasted | +SR | Stress relieved | ||||||||||||||||||||||
+BK | Bright down, no heat treatment after drawing | +T | Tempered | ||||||||||||||||||||||
+BKW | Cold drawing involving limited deformation | +U | Untreated | ||||||||||||||||||||||
+C | Cold-drawn | +WW | Hot forming | ||||||||||||||||||||||
+CH | Core hardenability | +V | Hardening and tempering | ||||||||||||||||||||||
+CR | Cold rolled | HB | General Brinell hardness, ball | ||||||||||||||||||||||
+HC | Hot rolled followed by cold hardening | HV | Vickers hardness | ||||||||||||||||||||||
+H | Normal hardenability at maximum range | HR | General Rockwell hardness | ||||||||||||||||||||||
+HH | Hardenability restricted towards top | HRC | Rockwell hardness, diamond penetrator | ||||||||||||||||||||||
+HR | Treated for a certain range of hardness | …..E | e.g. C45E with max sulphur content specified | ||||||||||||||||||||||
+I | Isothermal annealing | …..R | e.g. C45R with a range of sulphur content specified | ||||||||||||||||||||||
+N (TD) | Normalized | …..K | e.g. C15K, St 37-3 K = cold drawn | ||||||||||||||||||||||
+NT | Normalized and Tempered | …K… | e.g. CK15 = fully killed | ||||||||||||||||||||||
+P | Hardened by precipitation | …m… | e.g. Cm 55 with a range of sulphur content 0.020-0.040% | ||||||||||||||||||||||
+PE | Peeled | X….. | e.g. X6Cr17 X = the average content of at least one alloying element 5 % | ||||||||||||||||||||||
+PL | Polished (smoothed) | …..J2 | Guaranteed impact strength at –20°C > 40J | ||||||||||||||||||||||
+Q | Quenched | …..J0 | Guaranteed impact strength at 0°C > 27 J | ||||||||||||||||||||||
+QA | Quenched in air | …..JR | Guaranteed impact strength at +20°C > 27 J | ||||||||||||||||||||||
+QO | Quenched in oil | …..G3 | Fully killed steel | ||||||||||||||||||||||
Technical information
MAC BRIGHT STEEL
You can reach us quickly.
- +90 232 877 17 29
- info@macbrightsteel.com.tr
- Bağyurdu Halilbeyli Organized Industrial Zone District, Nif Street, No:20 Kemalpaşa / İzmir, Turkey